Direct comparison of measured and calculated total knee replacement force envelopes during walking in the presence of normal and abnormal gait patterns.
نویسندگان
چکیده
Knee joint forces measured from instrumented implants provide important information for testing the validity of computational models that predict knee joint forces. The purpose of this study was to validate a parametric numerical model for predicting knee joint contact forces against measurements from four subjects with instrumented TKRs during the stance phase of gait. Model sensitivity to abnormal gait patterns was also investigated. The results demonstrated good agreement for three subjects with relatively normal gait patterns, where the difference between the mean measured and calculated forces ranged from 0.05 to 0.45 body weights, and the envelopes of measured and calculated forces (from three walking trials) overlapped. The fourth subject, who had a "quadriceps avoidance" external moment pattern, initially had little overlap between the measured and calculated force envelopes. When additional constraints were added, tailored to the subject's gait pattern, the model predictions improved to complete force envelope overlap. Coefficient of multiple determination analysis indicated that the shape of the measured and calculated force waveforms were similar for all subjects (adjusted coefficient of multiple correlation values between 0.88 and 0.92). The parametric model was accurate in predicting both the magnitude and waveform of the contact force, and the accuracy of model predictions was affected by deviations from normal gait patterns. Equally important, the envelope of forces generated by the range of solutions substantially overlapped with the corresponding measured envelope from multiple gait trials for a given subject, suggesting that the variable strategic processes of in vivo force generation are covered by the solution range of this parametric model.
منابع مشابه
Knee Kinematic Improvement After Total Knee Replacement Using a Simplified Quantitative Gait Analysis Method
Objectives: The aim of this study was to extract suitable spatiotemporal and kinematic parameters to determine how Total Knee Replacement (TKR) alters patients’ knee kinematics during gait, using a rapid and simplified quantitative two-dimensional gait analysis procedure. Methods: Two-dimensional kinematic gait pattern of 10 participants were collected before and after the TKR surgery,...
متن کاملEffect of different walking speed on the gait kinematics of individuals with knee varus
The purpose of current study was to investigate the spatio-temporal gait parameters and knee varus angle during walking at different speeds in young with knee varus. 18 subjects with varus deformity classified at grade 3 of bowleg and 17 healthy subjects, volunteered to participate in this study. The following variables include stance, swing, double support and cycle time, cadence, stride le...
متن کاملVertical Ground Reaction Force Gait Patterns During Walking in Children with Autism Spectrum Disorders
The characteristics of vertical ground reaction force (VGRF) gait patterns in children with autism spectrum disorders (ASD) are poorly understood. The purpose of this study was to identify VGRF gait features that discriminate between children with ASD and the peer control group. The VGRF data were obtained from 30 children with ASD and 30 normal healthy children aged 4 to 12 years. A three-dime...
متن کاملEffective gait patterns for offloading the medial compartment of the knee.
Gait modification offers a noninvasive option for offloading the medial compartment of the knee in patients with knee osteoarthritis. While gait modifications have been proposed based on their ability to reduce the external knee adduction moment, no gait pattern has been proven to reduce medial compartment contact force directly. This study used in vivo contact force data collected from a singl...
متن کاملThe Influence of Horizontal Velocity on Inter-Lower-Limbs Local and Global Asymmetry during Walking
Purpose: Considering the influence of horizontal velocity on many biomechanical characteristics of walking, the purpose of this study was to investigate how inter-lower-limbs local and global asymmetry is influenced by changes in walking speed from slow to fast. Methods: Ground reaction force data and trajectory of attached markers of bilateral lower limbs of 15 right leg-dominant able-bodied ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 45 6 شماره
صفحات -
تاریخ انتشار 2012